WEB TECHNOLOGIES

UNIT - III
XML

XML

1. Introduction

* The Extensible Markup Language (XML) was
developed in 1996 by the World Wide Web
Consortium’s (W3C’s) XML Working Group.

« XML is a widely supported open technology (i.e.,
nonproprietary technology) for describing data
that has become the standard format for data
exchanged between applications over the
Internet.

 Web applications use XML extensively, and web
browsers provide many XML-related capabilities.

XML

2. XML Basics:

e XML permits document authors to create markup
(i.e., a text-based notation for describing data) for
virtually any type of information, enabling them to
create entirely new markup languages for describing
any type of data, such as mathematical formulas,
software configuration instructions, chemical
molecular structures, music, news, recipes and
financial reports.

e XML describes data in a way that human beings can
understand and computers can process.

* A simple XML document that describes information
for a baseball player is given here:

XML

<?xml version = "1.0"?>

<!-- F1g. 15.1: player.xml -->
<!-- Baseball player structured with XML -->
{D]EFEF}

<firstNames lohn</firstNames

<lastName>Doe</lastName>
<hattingAverages0.375</battingAverage>

{/D]E?EF}

WD 0D = D N e W N e

Fig. 15.1 | XML that describes a basebal player’sinfnrmatinq.

XML

XML Elements:

XML documents contain text that represents content (i.e., data), such as John (line 6 of Fig. 15.1), and elements that specify
the document’s structure, such as firstName (line 6 of Fig. 15.1).

XML documents delimit elements with start tags and end tags. A start tag consists of the element name in angle brackets
(e.g., <player> and <firstName> in lines 5 and 6, respectively). An end tag consists of the element name preceded by a
forward slash (/) in angle brackets (e.g., </firstName> and </player> in lines 6 and 9, respectively).

An element’s start and end tags enclose text that represents a piece of data (e.g., the player’s firstName—John—in line 6,
which is enclosed by the <firstName> start tag and </firstName> end tag).

Every XML document must have exactly one root element that contains all the other elements. In Fig. 15.1, the root
element is player (lines 5-9).

XML Vocabularies:

XML-based markup languages—called XML vocabularies—provide a means for describing particular types of data in
standardized, structured ways. Some XML vocabularies include XHTML (Extensible HyperText Markup Language),
MathML™(for mathematics), VoiceXML™ (for speech), CML (Chemical Markup Language—for chemistry), XBRL (Extensible
Business Reporting Language—for financial data exchange) and others.

Massive amounts of data are currently stored on the Internet in many formats (e.g., databases, web pages, text files). Much
of this data, especially that which is passed between systems, will soon take the form of XML.

The next generation of the web is being built on an XML foundation, enabling you to develop more sophisticated web-
based applications.

XML allows to assign meaning to what would otherwise be random pieces of data. As a result, programs can “understand”
the data they manipulate.

For example, a web browser might view a street address in a simple web page as a string of characters without any real
meaning. In an XML document, however, this data can be clearly identified (i.e., marked up) as an address.

A program that uses the document can recognize this data as an address and provide links to a map of that location, driving
directions from that location or other location-specific information.

Likewise, an application can recognize names of people, dates, ISBN numbers and any other type of XML-encoded data. The
application can then present users with other related information, providing a richer, more meaningful user experience.

XML

Viewing and Modifying XML Documents:

« XML documents are highly portable. Viewing or modifying
an XML document—which is a text file that usually ends
with the .xml filename extension—does not require
special software, although many software tools exist, and
new ones are frequently released that make it more
convenient to develop XML-based applications.

* Any text editor that supports ASCIl/Unicode characters can
open XML documents for viewing and editing.

* Also, most web browsers can display XML documents in a
formatted manner that shows the XML's structure.

* An important characteristic of XML is that it’s both human
and machine readable.

XML

Processing XML Documents:

Processing an XML document requires software called an XML parser (or XML processor). A parser makes
the document’s data available to applications.

While reading an XML document’s contents, a parser checks that the document follows the syntax rules
specified by the W3C’s XML Recommendation (www.w3.org/XML).

XML syntax requires a single root element, a start tag and end tag for each element, and properly nested
tags (i.e., the end tag for a nested element must appear before the end tag of the enclosing element). XML
is case sensitive, so the proper capitalization must be used in elements.

A document that conforms to this syntax is a well-formed XML document and is syntactically correct. If an
XML parser can process an XML document successfully, that XML document is well-formed.

Parsers can provide access to XML-encoded data in well-formed documents only. XML parsers are often
built into browsers and other software.

Validating XML Documents:

An XML document can reference a Document Type Definition (DTD) or a schema that defines the
document’s proper structure.

When an XML document references a DTD or a schema, some parsers (called validating parsers) can read
it and check that the XML document follows the structure it defines.

If the XML document conforms to the DTD/schema (i.e., has the appropriate structure), the document is
valid. For example, if in Fig. 15.1 we were referencing a DTD that specified that a player element must
have firstName, lastName and battingAverage elements, then omitting the lastName element (line 7 in Fig.
15.1) would invalidate the XML document player.xml.

However, it would still be well-formed, because it follows proper XML syntax (i.e., it has one root element,
each element has a start tag and an end tag, and the elements are nested properly).

By definition, a valid XML document is well-formed. Parsers that cannot check for document conformity
against DTDs/schemas are non-validating parsers—they determine only whether an XML document is
well-formed, not whether it’s valid.

XML

Formatting and Manipulating XML Documents:

Most XML documents contain only data, so applications that
process XML documents must decide how to manipulate or display
the data.

For example, a PDA (personal digital assistant) may render an XML
document differently than a wireless phone or a desktop computer.

Use Extensible Stylesheet Language (XSL) to specify rendering
instructions for different platforms.

XML-processing programs can also search, sort and manipulate
XML data using XSL.

Some other XML-related technologies are XPath (XML Path
Language—a language for accessing parts of an XML document),
XSL-FO (XSL Formatting Objects—an XML vocabulary used to
describe document formatting) and XSLT (XSL Transformations—a
language for transforming XML documents into other documents).

XML

3.Structuring Data:

XML allows to describe data precisely in a well-structured format.
XML Markup for an Article

* |In Fig. 15.2, an XML document that marks up a simple article using XML is given.
The line numbers shown are for reference only and are not part of the XML
document.

1 <?xml version = "1.0"?>

2

3 <!-- Fig. 15.2: article.xml -->

4 <!-- Article structured with XML -->

> <article>

6 <title>Simple XML</title>

7 <date>July 4, 2007</date>

8 <author>

9 <firstName>John</firstName>
10 <lastName>Doe</lastName>
11 </author>
12 <summary>=XML is pretty easy.</summary:>
13 <content>This chapter presents examples that use XML.</content>

14 </article>

Fig. 15.2 | XML used to mark up an article.

XML

XML Declaration:

This document begins with an XML declaration (line 1), which identifies the document as an XML
document. The version attribute specifies the XML version to which the document conforms. The

W3C may continue to release new versions as XML evolves to meet the requirements of different
fields.

Blank Space and Comments:

Blank lines are normally ignored by XML parsers. XML comments (lines 3—4), which begin with <!--
and end with -->, can be placed almost anywhere in an XML document and can span multiple lines.

There must be one end marker (-->) for each begin marker (<!--).

In Fig. 15.2, article (lines 5-14) is the root element. The lines that precede the root element (lines 1—
4) are the XML prolog. In an XML prolog, the XML declaration must appear before the comments
and any other markup.

XML Element Names:

The elements used in the example do not come from any specific markup language. Invent elements
to mark up your data. For example, element title (line 6) contains text that describes the article’s title
(e.g., Simple XML).

Similarly, date (line 7), author (lines 8-11), firstName (line 9), lastName (line 10), summary (line 12)
and content (line 13) contain text that describes the date, author, the author’s first name, the
author’s last name, a summary and the content of the document, respectively.

XML element names can be of any length and may contain letters, digits, underscores, hyphens and
periods. However, they must begin with either a letter or an underscore, and they should not begin
with “xml” in any combination of uppercase and lowercase letters (e.g., XML, Xml, xMl), as this is
reserved for use in the XML standards.

XML

Nesting XML Elements:

XML elements are nested to form hierarchies—with the root element at the top of the hierarchy. This allows
document authors to create parent/child relationships between data items.

For example, elements title, date, author, summary and content are children of article. Elements firstName and
lastName are children of author. Any element that contains other elements (e.g., article or author) is a container
element.

Container elements also are called parent elements. Elements nested inside a container element are child
elements (or children) of that container element. If those child elements are at the same nesting level, they’re
siblings of one another.

Viewing an XML Document in a Web Browser:

The XML document in Fig. 15.2 is simply a text file named article.xml. It does not contain formatting information
for the article. This is because XML is a technology for describing the structure of data.

The formatting and displaying of data from an XML document are application-specific issues.

For example, when the user loads article.xml in a web browser, the browser parses and displays the document’s
data. Each browser has a built-in style sheet to format the data. The resulting format of the data is similar to the
format of the listing in Fig. 15.2.

The down arrow () and right arrow () in the screen shots are not part of the XML document.

Google Chrome places them next to every container element. A down arrow indicates that the browser is
displaying the container element’s child elements.

Clicking the down arrow next to an element collapses that element (i.e., causes the browser to hide the container
element’s children and replace the down arrow with a right arrow).

Conversely, clicking the right arrow next to an element expands that element (i.e., causes the browser to display
the container element’s children and replace the right arrow with a down arrow). Parsers often store XML data as
tree structures to facilitate efficient manipulation.

XML

XML Markup for a Business Letter:

* Now examine a more complex one that marks up a business letter (Fig. 15.4).
Begin the document with the XML declaration (line 1) that states the XML

version to which the document conforms.

QOO NOUNAUNS=

Nonbh UN

<Zxml wversion = "1.0"7>
<!—— Fi1g. 15.4: letter.xml ——>=
<! —-—— Business letter marked up with XML ——=

<!'DOCTYPE letter SYSTEM "letter.dtd">=

<letter>

<Ccontact type = ""sender' >
<name=>Jane Doe</nName:>
<addressl=Box 12345</addressl>
<address2=15 Any Ave.</address2z2->
<City>=0thertown</Cclity>
<«state=0therstate</state>
<ZIp=>67890</Zi1p=>
<phone=555-4321</phone=
<fFlag gender = ""F" />

</ contact>

Fig. 15.4 | Business letter marked up with XML. (Part | of 2.}?

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

XML

<contact type = "receiver':
<name>John Doe</namex>
<address1>123 Main St.</addressl>
<address2></address2>
<City>Anytown</Ccity>
<state>Anystate</state>
<Zip>12345</Z1ip>
<phone>555-1234</phone>
<flag gender = "M" />

</contact>

<salutation>Dear Sir:</salutation>

<paragraph>It is our privilege to inform you about our new database
managed with XML. This new system allows you to reduce the
load on your 1inventory list server by having the client machine
perform the work of sorting and filtering the data.

</paragraph>

<paragraph>Please visit our website for availability and pricing.
</paragraph>

<closing>Sincerely,</closing>
<signature>Ms. Jane Doe</signatures
</letter>

Fig. 15.4 | Business letter marked up with XML. (Part 2 of 2.)

13

XML

Line 5 specifies that this XML document references a DTD. DTDs define the
structure of the data for an XML document.

For example, a DTD specifies the elements and parent/child relationships
between elements permitted in an XML document.

DOCTYPE:

The DOCTYPE reference (line 5) contains three items: the name of the root
element that the DTD specifies (letter); the keyword SYSTEM (which denotes an
external DTD—a DTD declared in a separate file, as opposed to a DTD declared
locally in the same file); and the DTD’s name and location (i.e., letter.dtd in the
current directory; this could also be a fully qualified URL). DTD document
filenames end with the .dtd extension.

Validating an XML Document Against a DTD

Many online tools can validate your XML documents against DTDs or schemas.
The validator at http://www.xmlvalidation.com/ can validate XML documents
against either DTDs or schemas.

To use it, either paste your XML document’s code into a text area on the page
or upload the file. If the XML document references a DTD, the site asks you to
paste in the DTD or upload the DTD file. Also select a checkbox for validating
against a schema instead. Then click a button to validate your XML document.

XML

The XML Document’s Contents:

Root element letter (lines 7-43 of Fig. 15.4) contains the child elements contact, contact, salutation, paragraph,
paragraph, closing and signature.

Data can be placed between an element’s tags or as attributes—name/value pairs that appear within the angle
brackets of an element’s start tag. Elements can have any number of attributes (separated by spaces) in their start
tags.

The first contact element (lines 8-17) has an attribute named type with attribute value "sender", which indicates
that this contact element identifies the letter’s sender.

The second contact element (lines 19—-28) has attribute type with value "receiver", which indicates that this contact
element identifies the recipient of the letter. Like element names, attribute names are case sensitive, can be any
length, may contain letters, digits, underscores, hyphens and periods, and must begin with either a letter or an
underscore character.

A contact element stores various items of information about a contact, such as the contact’s name (represented by
element name), address (represented by elements addressl, address2, city, state and zip), phone number
(represented by element phone) and gender (represented by attribute gender of element flag).

Element salutation (line 30) marks up the letter’s salutation. Lines 32—39 mark up the letter’s body using two
paragraph elements. Elements closing (line 41) and signature (line 42) mark up the closing sentence and the

’ o

author’s “signature,” respectively.

Line 16 introduces the empty element flag. An empty element is one that does not have any content. Instead, it
sometimes places data in attributes.

Empty element flag has one attribute that indicates the gender of the contact (represented by the parent contact
element). Document authors can close an empty element either by placing a slash immediately preceding the right
angle bracket, as shown in line 16, or by explicitly writing an end tag, as in line 22:<address2></address2>

The address2 element in line 22 is empty because there’s no second part to this contact’s address. However, we
must include this element to conform to the structural rules specified in the XML document’s DTD—letter.dtd> This
DTD specifies that each contact element must have an address2 child element.

XML

4. XML Namespaces:

XML allows document authors to create custom elements. This extensibility can result
in naming collisions among elements in an XML document that have the same name.

For example, we may use the element book to mark up data about a Deitel publication.
A stamp collector may use the element book to mark up data about a book of stamps.
Using both of these elements in the same document could create a naming collision,
making it difficult to determine which kind of data each element contains.

An XML namespace is a collection of element and attribute names. XML namespaces
provide a means for document authors to unambiguously refer to elements with the
same name (i.e., prevent collisions). For example, <subject>Geometry</subject> and
<subject>Cardiology</subject> use element subject to mark up data. In the first case,
the subject is something one studies in school, whereas in the second case, the subject
is a field of medicine.

Namespaces can differentiate these two subject elements—for example:
<highschool:subject>Geometry</highschool:subject> and
<medicalschool:subject>Cardiology</medicalschool:subject>

Both highschool and medicalschool are namespace prefixes. A document author places
a namespace prefix and colon (:) before an element name to specify the namespace to
which that element belongs. Document authors can create their own namespace
prefixes using virtually any name except the reserved namespace prefix xml.

Differentiating Elements with Namespaces

Figure 15.5 demonstrates namespaces. In this document, namespaces differentiate two
distinct elements—the file element related to a text file and the file document related
to an image file.

XML

i <?xml wversion = "1.0"7>

2z

3 <!-- Fi1g. 15.5: namespace.xml -->

<3 <! -- Demonstrating namespaces -->

5 <text:directory

6 xmins:text = "urn:deitel :textInfo”

T xmlns:image = "urn:deitel : imageInfo'>

Fig. 15.5 | XML namespaces demonstration. (Part | of 2.)

8

9 <text:file filename = "book.xml">

10 <text:description>A book list</text:description>

11 </text:file>

12

13 <image:file filename = "funny.ijpg'>

14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />

16 </image:file>

1T </text:directory>

17

Fig. 15.5 | XML namespaces demonstration. (Part 2 of 2.)

XML

The xmlins Attribute:

Lines 6—7 use the XML-namespace reserved attribute xmlns to create two namespace
prefixes—text and image.

Each namespace prefix is bound to a series of characters called a Uniform Resource
Identifier (URI) that uniquely identifies the namespace.

Document authors create their own namespace prefixes and URIs. A URI is a way to
identifying a resource, typically on the Internet.

Two popular types of URI are Uniform Resource Name (URN) and Uniform Resource
Locator (URL).

Unique URIs:

To ensure that namespaces are unique, document authors must provide unique URIs.

In this example, urn:deitel:textInfo and urn:deitel:imagelnfo as URIs are used. These URIs
employ the URN scheme that is often used to identify namespaces.

Under this naming scheme, a URI begins with "urn:", followed by a unique series of
additional names separated by colons.

Another common practice is to use URLs, which specify the location of a file or a resource
on the Internet.

For example, www.deitel.com is the URL that identifies the home page of the Deitel &
Associates website. Using URLs guarantees that the namespaces are unique because the
domain names (e.g., www.deitel.com) are guaranteed to be unique. For example, lines 5—
7 could be rewritten as

XML

<text:directory
xmins:text = "http://www.deitel.com/xmins-text"
xmlins:image = "http://www.deitel.com/xmins-image">

where URLs related to the deitel.com domain name serve as
URIs to identify the text and image namespaces.

e The parser does not visit these URLs, nor do these URLs
need to refer to actual web pages.

 They each simply represent a unique series of characters
used to differentiate URI names.

 In fact, any string can represent a namespace.

e For example, our image namespace URI could be
hgjfkdlsa4556, in which case our prefix assignment would
be xmlins:image = "hgjfkdlsa4556"

XML

Namespace Prefix:

e Lines 9-11 use the text namespace prefix for elements file and
description. The end tags must also specify the namespace prefix text.

 Lines 13-16 apply namespace prefix image to the elements file,
description and size.

e Attributes do not require namespace prefixes (although they can have
them), because each attribute is already part of an element that specifies
the namespace prefix.

 For example, attribute filename (line 9) is implicitly part of namespace
text because its element (i.e., file) specifies the text namespace prefix.

Specifying a Default Namespace:

« To eliminate the need to place namespace prefixes in each element,
document authors may specify a default namespace for an element and
its children.

e Figure 15.6 demonstrates using a default namespace (urn:deitel:textInfo)
for element directory.

XML

I <?xml version = "1.0"?>

2

3 <!-- Fig. 15.6: defaultnamespace.xml -->

4 <!-- Using default namespaces -->

5 <directory xmlns = "urn:deitel:textInfo"

6 xmlns:image = "urn:deitel:imageInfo">

[4

8 <file filename = "book.xml">

9 <tdescription>A book 1list</description:

10 </file>

11

12 <image:file filename = "funny.jpg’>

13 <image:description>A funny picture</image:description>
14 <image:size width = "200" height = "100" />
15 </image:file>

16 </directory:>

Fig. 15.6 | Default namespace demonstration. 21

XML

Line 5 defines a default namespace using attribute xmins with no prefix
specified but with a URI as its value.

Child elements belonging to the namespace need not be qualified by a
namespace prefix.

Thus, element file (lines 8-10) is in the default namespace urn:deitel:textinfo.

Compare this to lines 9—-10 of Fig. 15.5, where we had to prefix the file and
description element names with the namespace prefix text.

The default namespace applies to the directory element and all elements that
are not qualified with a namespace prefix.

Use a namespace prefix to specify a different namespace for a particular
element.

For example, the file element in lines 12— 15 of Fig. 15.16 includes the image
namespace prefix, indicating that this element is in the urn:deitel:imagelnfo
namespace, not the default namespace.

Namespaces in XML Vocabularies:

XML-based languages, such as XML Schema and Extensible Stylesheet Language
(XSL), often use namespaces to identify their elements.

Each vocabulary defines special-purpose elements that are grouped in
namespaces. These namespaces help prevent naming collisions between
predefined elements and user-defined elements.

XML

5. Document Type Definitions (DTDs):

Document Type Definitions (DTDs) are one of two main types of
documents you can use to specify XML document structure.

Creating a Document Type Definition:

Figure 15.4 presented a simple business letter marked up with XML.
Recall that line 5 of letter.xml references a DTD—letter.dtd (Fig. 15.7).

This DTD specifies the business letter’s element types and attributes and
their relationships to one another.

A DTD describes the structure of an XML document and enables an XML
parser to verify whether an XML document is valid (i.e., whether its
elements contain the proper attributes and appear in the proper
sequence).

DTDs allow users to check document structure and to exchange data in a
standardized format.

A DTD expresses the set of rules for document structure using an EBNF
(Extended Backus-Naur Form) grammar.

DTDs are not themselves XML documents.

XML

| <!-= Fig. 15.7: letter.dtd -
2 <! - DTD document fTor letter.xml --—=
3
4 <!ELEMENT letter (contact+, salutation, paragraph+,
5 closing, signature)>
6
T <!ELEMENT contact (name, addressl, addressZ2, city, state,
8 zip, phone, flag)=>
9 <!"ATTLIST contact type CDATA #IMPLIED-
10
11 <!ELEMENT name (#PCDATA)>
12 <!TELEMENT addressl (#PCDATA)>
13 <!TELEMENT address2 (#PCDATA)>
14 <!TELEMENT city (#PCDATA)>
15 <!'ELEMENT state (#PCDATA)>
16 <!ELEMENT zip (#PCDATA)=
17 <!ELEMENT phone (#PCDATA)>
18 <!ELEMENT flag EMPTY>
19 <!ATTLIST tlag gender (M | F) "M">
20
21 <!ELEMENT salutation (#PCDATA)->
22 <!'ELEMENT closing (#PCDATA)=
23 <!ELEMENT paragraph (#PCDATA)->
24 <!ELEMENT signature (#PCDATA)>
Fig. 15.7 | Document Type Definition (DTD) for a business letter. 24

XML

Defining Elements in a DTD:

The ELEMENT element type declaration in lines 4-5 defines the rules for element letter. In this case, letter
contains one or more contact elements, one salutation element, one or more paragraph elements, one
closing element and one signature element, in that sequence.

The plus sign (+) occurrence indicator specifies that the DTD requires one or more occurrences of an
element.

Other occurrence indicators include the asterisk (*), which indicates an optional element that can occur
zero or more times, and the question mark (?), which indicates an optional element that can occur at most
once (i.e., zero or one occurrence).

If an element does not have an occurrence indicator, the DTD requires exactly one occurrence.

The contact element type declaration (lines 7-8) specifies that a contact element contains child elements
name, address1, address2, city, state, zip, phone and flag— in that order.

The DTD requires exactly one occurrence of each of these elements.

Defining Attributes in a DTD:

Line 9 uses the ATTLIST attribute-list declaration to define an attribute named type for the contact
element. Keyword #IMPLIED specifies that if the parser finds a contact element without a type attribute,
the parser can choose an arbitrary value for the attribute or can ignore the attribute.

Either way the document will still be valid (if the rest of the document is valid)—a missing type attribute
will not invalidate the document. Other keywords that can be used in place of #IMPLIED in an ATTLIST
declaration include #REQUIRED and #FIXED.

Keyword #REQUIRED specifies that the attribute must be present in the element and keyword #FIXED
specifies that the attribute (if present) must have the given fixed value.

For example, <IATTLIST address zip CDATA #FIXED "01757"> indicates that attribute zip (if present in
element address) must have the value 01757 for the document to be valid.

If the attribute is not present, then the parser, by default, uses the fixed value that the ATTLIST declaration
specifies.

XML

Character Data vs. Parsed Character Data:

Keyword CDATA (line 9) specifies that attribute type contains character
data (i.e., a string). A parser will pass such data to an application without
modification.

Keyword #PCDATA (line 11) specifies that an element (e.g., name) may
contain parsed character data (i.e., data that’s processed by an XML
parser).

Elements with parsed character data cannot contain markup characters,
such as less than (<), greater than (>) or ampersand (&).

The document author should replace any markup character in a
#PCDATA element with the character’s corresponding character entity
reference.

For example, the character entity reference &lIt; should be used in place
of the less-than symbol (<), and the character entity reference >
should be used in place of the greater-than symbol (>).

A document author who wishes to use a literal ampersand should use
the entity reference & instead—parsed character data can contain
ampersands (&) only for inserting entities.

XML

Defining Empty Elements in a DTD:

Line 18 defines an empty element named flag. Keyword EMPTY specifies that the
element does not contain any data between its start and end tags. Empty elements
commonly describe data via attributes. For example, flag’s data appears in its gender
attribute (line 19).

Line 19 specifies that the gender attribute’s value must be one of the enumerated values
(M or F) enclosed in parentheses and delimited by a vertical bar (|) meaning “or.” Note
that line 19 also indicates that gender has a default value of M.

Well-Formed Documents vs. Valid Documents:

The validation revealed that the XML document letter.xml (Fig. 15.4) is well-formed and
valid—it conforms to letter.dtd (Fig. 15.7).

Recall that a well-formed document is syntactically correct (i.e., each start tag has a
corresponding end tag, the document contains only one root element, etc.), and a valid
document contains the proper elements with the proper attributes in the proper
sequence.

An XML document cannot be valid unless it’s well-formed. When a document fails to
conform to a DTD or a schema, an XML validator displays an error message.

For example, the DTD in Fig. 15.7 indicates that a contact element must contain the child
element name. A document that omits this child element is still well-formed but is not
valid.

XML

6. W3C XML Schema Documents:

Schemas are introduced for specifying XML document structure and validating XML documents. Many
developers in the XML community believe that DTDs are not flexible enough to meet today’s programming
needs.

For example, DTDs lack a way of indicating what specific type of data (e.g., numeric, text) an element can
contain, and DTDs are not themselves XML documents, forcing developers to learn multiple grammars and
developers to create multiple types of parsers. These and other limitations have led to the development of
schemas.

Unlike DTDs, schemas do not use EBNF grammar. Instead, they use XML syntax and are actually XML
documents that programs can manipulate.

Like DTDs, schemas are used by validating parsers to validate documents.
In this section, we focus on the W3C’s XML Schema vocabulary (note the capital “S” in “Schema”).

Recall that a DTD describes an XML document’s structure, not the content of its elements. For example,
<quantity>5</quantity> contains character data.

If the document that contains element quantity references a DTD, an XML parser can validate the
document to confirm that this element indeed does contain PCDATA content.

However, the parser cannot validate that the content is numeric; DTDs do not provide this capability. So,
unfortunately, the parser also considers <quantity>hello</quantity> to be valid.

An application that uses the XML document containing this markup should test that the data in element
guantity is numeric and take appropriate action if it’s not.

XML Schema enables schema authors to specify that element quantity’s data must be numeric or, even
more specifically, an integer.

A parser validating the XML document against this schema can determine that 5 conforms and hello does
not. An XML document that conforms to a schema document is schema valid, and one that does not
conform is schema invalid.

Schemas are XML documents and therefore must themselves be valid.

XML

Validating Against an XML Schema Document:

 Figure 15.9 shows a schema-valid XML document named
book.xml, and Fig. 15.10 shows the pertinent XML Schema
document (book.xsd) that defines the structure for
book.xml. By convention, schemas use the .xsd extension.

e An online XSD schema validator provided at
www.xmlforasp.net/SchemaValidator.aspx is used to
ensure that the XML document in Fig. 15.9 conforms to the
schema in Fig. 15.10.

* To validate the schema document itself (i.e., book.xsd) and
produce the output shown in Fig. 15.10, an online XSV
(XML Schema Validator) provided by the W3C at
www.w3.0rg/2001/03/webdata/xsv is used.

 These tools are free and enforce the W3C’s specifications
regarding XML Schemas and schema validation.

XML

WO 0~ oy W -

20
rd

<7?xml version = "1.0"7>

<!-- Fig. 15.9: book.xml -->
<!-- Book list marked up as XML -->
<deitel :books xmlns:deitel = "http://www.deitel .com/booklist">
<book>
<title>Visual Basic 2010 How to Program</title>
</book>
<book>
<title>Visual C# 2010 How to Program, 4/e</title>
</book:>
<book>
<title>Java How to Program, 9/e</title>
</book:>
<book>
<title>C++ How to Program, 8/e</title>
</book>
<book>
<title>Internet and World Wide Web How to Program, 5/e</title>
</book:>
</deitel :books>

Fig. 15.9 | Schema-valid XML document describing a list of books. 20

XML

<?xm]l version = "1.0"7>

<!-- Fig. 15.10: book.xsd -=>
<!-- Simple W3C XML Schema document -->

B W -

Fig. 15.10 | XML Schema document for book.xm1. (Part | of 2.)

<schema xmlns = "http://www.w3.org/2001/XMLSchema"’
xmins:deitel = "http:/ "/ www.deitel .com/booklist"”
targetNamespace = "http://www.de1itel .com/booklist">
<element name = "books" type = "deitel:BooksType"/>
<complexTyvpe name = "BooksType'>
<seqguence:>
<element name = "book' type = ""deitel :5ingleBookType"
minODccurs = "1" maxOccurs = "unbounded' />
</sequence>

</complexType>

<complexType name = "SingleBookType'>
“seguence:>
<element name = "title" type = "string”./>
</sequence>
</complexType
</schema>

() Schema validation report 1o

B & O wenwew2org/2001/03/webdata/ 57| £ BA = & mm 2

Schema validating with XSV 3.1 1 of 2007/12/11 16:20:05

* Target file:/usar/locel/ESVixsvliog/cmpZkQFfouploads=d
(Real name- book xsd)

docEl {http: ./ /www.w3.oxrg/ 2001/ XMLSchena}t schema

% alidation was strict, starting with tvpe [Anonymous]

The schema(s) used for schema-vahdation had no errors

o schema-—validity problems were found in the target

L B

Fig. 15.10 | XML Schema document for book.xm1. (Part 2 of 2.)

31

XML

Figure 15.9 contains markup describing several Deitel books. The books element (line 5) has the namespace prefix
deitel, indicating that the books element is a part of the http://www.deitel.com/booklist namespace.

Creating an XML Schema Document:

Figure 15.10 presents the XML Schema document that specifies the structure of book.xml (Fig. 15.9). This
document defines an XML-based language (i.e., a vocabulary) for writing XML documents about collections of
books. The schema defines the elements, attributes and parent/child relationships that such a document can (or
must) include. The schema also specifies the type of data that these elements and attributes may contain.

Root element schema (Fig. 15.10, lines 5-23) contains elements that define the structure of an XML document
such as book.xml. Line 5 specifies as the default namespace the standard W3C XML Schema namespace URI—
http://www.w3.0rg/2001/XMLSchema.

This namespace contains predefined elements (e.g., root-element schema) that comprise the XML Schema
vocabulary—the language used to write an XML Schema document.

Line 6 binds the URI http://www.deitel.com/booklist to namespace prefix deitel. Line 7 also specifies
http://www.deitel.com/booklist as the targetNamespace of the schema.

This attribute identifies the namespace of the XML vocabulary that this schema defines. Note that the
targetNamespace of book.xsd is the same as the namespace referenced in line 5 of book.xml (Fig. 15.9).

This is what “connects” the XML document with the schema that defines its structure. When a schema validator
examines book.xml and book.xsd, it will recognize that book.xml uses elements and attributes from the
http://www.deitel.com/ booklist namespace.

The validator also will recognize that this namespace is the namespace defined in book.xsd (i.e., the schema’s
targetNamespace). Thus the validator knows where to look for the structural rules for the elements and attributes
used in book.xml.

Defining an Element in XML Schema:

* In XML Schema, the element tag (line 9 of Fig. 15.10) defines an element to be included in an XML
document that conforms to the schema. In other words, element specifies the actual elements that
can be used to mark up data.

* Line 9 defines the books element, which we use as the root element in book.xml (Fig. 15.9).
Attributes name and type specify the element’s name and type, respectively. An element’s type
indicates the data that the element may contain.

* Possible types include XML Schema-defined types (e.g., string, double) and user-defined types (e.g.,
BooksType, which is defined in lines 11-16 of Fig. 15.10). Figure 15.11 lists several of XML Schema’s
many built-in types.

Type Description Range or structure Examples
string A characrter string "hello™
boolean True or false true, false true
decimal A decimal i * (10"), where i is an integer and 5, -12, -45_.78
numeral n is an integer that's less than or
equal to zero.
float A floating-point m * (2¢), where m is an integer 0,12, -109.375,
number whose absolute value is less than NaM

224 and e is an integer in the range
-149 to 104. Plus three additional
numbers: positive infinity, negative
infinity and not-a-number (NaN).
33
Fig. 15.11 | Some XML Schema types. (Part | of 2.)

Description

XML

Range or structure

double

long

short

date

time

Fig. 15.11

A floating-point
number

A whole number
A whole number

A whole number

A date consisting
of a year, month

and day

A tme consisting
of hours, minutes
and seconds

m * (2¢), where m is an integer
whose absolute value is less than
253 and e is an integer in the range
-1075 to 970. Plus three additional
numbers: positive infinity, nega-
tive infinity and not-a-number
(NaN).

-92233720368547 75808 to
922337203685477 5807, inclusive.

-2147483648 to 2147483647, inclu-
sive.

-32768 to 32767, inclusive.

yyyy-mm with an optional dd and
an optional time zone, where yyyy

is four digits long and mm and dd
are two digits long.

hh:mm:ss with an optional time
zone, where hh, mm and ss are two

digits long.

| Some XML Schema types. (Part 2 of 2.)

0,12, -109.375,
MaM

1234567890,
-1234567890

1234567830,
-1234567890

12, -345
2005-05-10

16:30:25-05:00

34

XML

In this example, books is defined as an element of type deitel:BooksType (line 9).
BooksType is a user-defined type (lines 11-16 of Fig. 15.10) in the namespace http://
www.deitel.com/booklist and therefore must have the namespace prefix deitel. It’s not
an existing XML Schema type.

Two categories of type exist in XML Schema—simple types and complex types. They
differ only in that simple types cannot contain attributes or child elements and complex
types can.

A user-defined type that contains attributes or child elements must be defined as a
complex type. Lines 11-16 use element complexType to define BooksType as a complex
type that has a child element named book.

The sequence element (lines 12—-15) allows you to specify the sequential order in which
child elements must appear. The element (lines 13—14) nested within the complexType
element indicates that a BooksType element (e.g., books) can contain child elements
named book of type deitel:SingleBookType (defined in lines 18-22).

Attribute minOccurs (line 14), with value 1, specifies that elements of type BooksType
must contain a minimum of one book element. Attribute maxOccurs (line 14), with value
unbounded, specifies that elements of type BooksType may have any number of book
child elements.

Lines 18—-22 define the complex type SingleBookType. An element of this type contains a
child element named title. Line 20 defines element title to be of simple type string.

Recall that elements of a simple type cannot contain attributes or child elements. The
schema end tag (</schema>, line 23) declares the end of the XML Schema document.

XML

A Closer Look at Types in XML Schema:

Every element in XML Schema has a type. Types include the built-in types
provided by XML Schema (Fig. 15.11) or user-defined types (e.g.,
SingleBookType in Fig. 15.10).

Every simple type defines a restriction on an XML Schema-defined type or a
restriction on a user-defined type. Restrictions limit the possible values that an
element can hold.

Complex types are divided into two groups—those with simple content and
those with complex content. Both can contain attributes, but only complex
content can contain child elements.

Complex types with simple content must extend or restrict some other existing
type. Complex types with complex content do not have this limitation. We
demonstrate complex types with each kind of content in the next example.

The schema document in Fig. 15.12 creates both simple types and complex
types. The XML document in Fig. 15.13 (laptop.xml) follows the structure
defined in Fig. 15.12 to describe parts of a laptop computer.

A document such as laptop.xml that conforms to a schema is known as an XML
instance document—the document is an instance (i.e., example) of the schema.

oVvE~NOUEAWN=

XML

<?xml1 wersion = ""1.0"7>
<l!l—— Fig. 15.12: computer.xsd —-—>
<l—— W3IC XML Schema document -

<schema xmlns
xmlns: computer
targetNamespace

"http: // www.deditel

<simplelTyvpe name "gigahertz"">
<restriction base "decimal" >
cminInclusive wvalue 2 L™
</restriction>
</simpleType>

<complexTyvpe name "CPU" >

<simpleContent>
cextension base

"string'>

"http: // vwww.w3 .org,/ 2001/ XMLSchema™

.com/computer"

"http://www.deitel . com/computer'>

<attribute name = "model” type = "string" />
</extension>
</simpleContent>
</ complexType>
<complexType name = "portable’'>
<all=
<element name = "processor"” type = ""computer:CPU"/>
<element name = "monitor"” type = "int"/>
<element name = "CPUSpeed” twype = "computer:gigahertz"/>
<element name = "RAM" type = "1int" />

</Sall>
<attribute name
</complexType=

"manufacturer"

<element name
</schema>

"laptop’™ tvpe

type "string" />

"computer:portable />

15.12 |

XML Schema document defining simple and complex types.

XML

<7xml version = "1.0"7s

I

2

3 <!-- Fig. 15.13: laptop.xml -=>

4 <!-- Laptop components marked up as XML -->

5 <computer:laptop xmlns:computer = "http://www.de1tel.com/computer”
6 manufacturer = "IBN">

|

8 <processor model = "Centrino">Intel</processor>

g <monitor>17</monitor:

10 <(PUSpeed>2 .4</CPUSpeed:>

[<RAM>256</RAM>
12 </computer:laptop>

Fig. 15.13 | XML document using the 1aptop element defined in computer .xsd.

XML

Line 5 of Fig. 15.12 declares the default namespace to be the standard XML Schema namespace—any elements without a
prefix are assumed to be in that namespace. Line 6 binds the namespace prefix computer to the namespace
http://www.deitel.com/ computer.

Line 7 identifies this namespace as the targetNamespace—the namespace being defined by the current XML Schema
document. To design the XML elements for describing laptop computers, we first create a simple type in lines 9-13 using
the simpleType element. We name this simpleType gigahertz because it will be used to describe the clock speed of the
processor in gigahertz.

Simple types are restrictions of a type typically called a base type. For this simpleType, line 10 declares the base type as
decimal, and we restrict the value to be at least 2.1 by using the mininclusive element in line 11.

Next, we declare a complexType named CPU that has simpleContent (lines 16—20). Remember that a complex type with
simple content can have attributes but not child elements. Also recall that complex types with simple content must extend
or restrict some XML Schema type or user-defined type.

The extension element with attribute base (line 17) sets the base type to string. In this complexType, we extend the base
type string with an attribute. The attribute element (line 18) gives the complexType an attribute of type string named
model.

Thus an element of type CPU must contain string text (because the base type is string) and may contain a model attribute
that’s also of type string.

Last, we define type portable, which is a complexType with complex content (lines 23—31). Such types are allowed to have
child elements and attributes. The element all (lines 24—-29) encloses elements that must each be included once in the
corresponding XML instance document. These elements can be included in any order.

This complex type holds four elements—processor, monitor, CPU Speed and RAM. They’re given types CPU, int, gigahertz
and int, respectively. When using types CPU and gigahertz, we must include the namespace prefix computer, because
these user-defined types are part of the computer namespace (http://www.deitel.com/computer)—the namespace
defined in the current document (line 7). Also, portable contains an attribute defined in line 30.

The attribute element indicates that elements of type portable contain an attribute of type string named manufacturer.
Line 33 declares the actual element that uses the three types defined in the schema. The element is called laptop and is of
type portable. We must use the namespace prefix computer in front of portable.

XML

We’ve now created an element named laptop that contains
child elements processor, monitor, CPU Speed and RAM, and an
attribute manufacturer.

Figure 15.13 uses the Ilaptop element defined in the
computer.xsd schema. Once again, we used an online XSD
schema validator (www.xmlforasp.net/SchemaValidator.aspx)
to ensure that this

XML instance document adheres to the schema’s structural
rules. Line 5 declares namespace prefix computer.

The laptop element requires this prefix because it’s part of the
http://www.deitel.com/computer namespace. Line 6 sets the
laptop’s manufacturer attribute, and lines 8-11 use the
elements defined in the schema to describe the laptop’s
characteristics.

This section introduced W3C XML Schema documents for
defining the structure of XML documents, and we validated
XML instance documents against schemas using an online XSD
schema validator.

